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Abstract: This report presents an analysis on the performance of 5 classification algorithms tested on 

two UCI datasets, “Adult Income” and “Letter Recognition”. A statistical analysis is presented on both 

problems, followed by individual analyses for the following algorithms: Decision Trees, Decision Trees 

with Adaptive Boosting, k Nearest Neighbors, Artificial Neural Networks, and Support Vector Machines. 

Introduction 

There are two types of machine learning problems: Classification and Regression. The purpose of 

this paper is to explore two classification problems and evaluate them using a variety of algorithms. The 

Adult Income and Letter Recognition datasets were selected from the UCI repository based on relevance 

to the fields of study and complexity to compare each algorithm. [1][2] 

Dataset Information 

Preprocessing 

The quality datasets have not been modified. The Adult Income dataset was converted from a .csv 

to .arff, and the Letter Recognition dataset was converted from .data to .arff, both for processing in 

WEKA. In WEKA Explorer, both datasets have been separated into training, validation and test sets 

using RemovePercentage. The histograms Figure 1 below show the existing distribution of the full 

datasets prior to splitting, which were used as a reference for additional segmented datasets.  

 

    

Figure 1: Histograms of Dataset 1 (left) and Dataset 2 (right) 



Dataset 1: Adult Income 

In the last decade, the global population living in poverty (defined as living with less than $2 per 

day, 1985 prices) has decreased dramatically from 80% in 1920, to 50% in 1970 to 10% in 2015 [3]. 

Similarly, the standard of living in nations globally is on the rise [4]. National policy plays a role in 

achieving this prosperity. In order for governments to determine changes in policy, it uses data to 

measure previous and current states. A primary resource for governments is census data, which collects 

socio-economic details of the population. Dataset 1 is a subset from the 1994 US Census, which is used 

to relate education, heritage and age (among others) against income, in this case, whether income is 

above or below $50,000 per year. Governments can use this data to determine the most impactful 

factors for increasing household income.   

The dataset consists of 2 classes (<=$50k, >$50k), 14 socio-economic attributes, and over 30,000 

instances which allows for sufficiently large subsets when splitting the overall dataset into training, 

validation and test sets. In terms of machine learning, Dataset 1 is interesting because the algorithms 

perform very similarly, all achieving near 85% accuracy. This may be due to an uneven distribution 

within the output class (24,720/7,481) as observed from the histogram. However, this is common for 

most datasets. In addition, the factors for household income may require more attributes than in the 

dataset. However this may introduce the curse of dimensionality. 

Dataset 2: Letter Recognition 

Computer vision is a fast-growing field within machine learning as algorithms, hardware and 

cloud computing are finally coming together to make technologies viable, such as virtual reality, 

augmented reality and autonomous vehicles. Within the field of computer vision, optical character 

recognition (OCR) plays an important role in the advance of technology. Many industries such as 

healthcare, finance, law and construction have used OCR to help with paperwork reduction, process 

improvement and task automation. A study of the accuracy of OCR is important to the computer vision 

industry, as it is more mature and can be used as a guide when developing for more difficult sub-

domains like video tracking and object recognition. 

The letter recognition dataset contains 26 classes (one for each letter in the alphabet), 16 

attributes (position, length, statistical moments), and 20,000 instances of user-generated letters based 

on a variety of fonts. The size of the dataset allows for proper segmentation into training, validation and 

test sets. Dataset 2 is interesting with respect to machine learning because the performance of the 

algorithms can be radically different. This creates an opportunity to explore under what circumstances 

certain algorithms behave better than others.  



Algorithm Implementation 

All analyses performed in this summary were done using machine learning tools available for 

WEKA GUI.  All algorithm results presented were found using 10-fold cross validation unless specified. 

To evaluate each of the 5 classification algorithms, the overall dataset was split into training, validation 

and test sets, as explained below and shown in Figure 2. 

 

Figure 2: Training, Validation and Test Set Split for Dataset 1 and 2 

To evaluate each of the 5 classification algorithms, the overall dataset was split the data 80/20 

into training and test sets. The training set was used to tune each algorithm, and the test set is to remain 

untouched during all experiments until a model has been selected for each algorithm. Then the final 

performance will be evaluated on the test set. 

From the 80% training set, it will be further split 70/30 into cross validation and model selection 

sets. The cross validation set will employ 10-fold cross validation to remove the bias of selecting a 

model that performs well on training data, but does not generalize well. The model selection set is a test 

set to evaluate model complexity and learning curves.  

Since both datasets are classification problems, the performance of each algorithm will be based 

on accuracy (% correct instances) rather than the root mean squared error (RMSE). Before evaluating 

the various algorithms, note that to perform better than chance, the accuracy of each algorithms must be 

greater than 50% for Dataset 1 (1/2) and ~4% for Dataset 2 (1/26).  

There are some biases to be aware of when observing the algorithms. With respect to model 

selection, the parameters are evaluated rules of thumb at first, which may influence the selection in 

further tests. Also, for example, computation time is independent of model accuracy, but this parameter 

played a part in how the series of experiments were constructed. In addition to these restrictive biases, 

there are preference biases towards simplicity, correctness, locality, smoothness and attribute equality. 

Decision Tree 

The WEKA J48 classifier (“J” indicates Java, and “48” indicates C4.8 – an extension of the C4.5 

algorithm) was used to evaluate the decision tree. Pruning was employed to observe the effect of 

removing less relevant branches on the reduction of overfitting the training set. Pruning was conducted 



by manipulating the confidence factor, C, and the minimum number of outputs, M. A lower confidence 

factor helps induce pruning but may decrease accuracy, which was counter-balanced with 10-fold cross 

validation.  

The decision tree algorithm is an eager learner, as it builds the model from the training data, 

which is then used for the test data. However, decision tree has relatively low computation time for 

training and testing compared to other eager learners (ANN, SVM).  

Dataset 1: Adult Income 

Table 1 below summarizes the model complexity experiments. Note the reduced size of tree 

when various degrees of pruning are applied. The results also demonstrate that decision trees are eager 

learners, since the build time is more than 10x the testing time. Lastly, the training and test accuracy fall 

within 2% of each other, indicating a small reliance on the input parameters. The chart shows that the 

parameters confidence, C = 0.25 and minimum outputs, M = 3 output the highest accuracy.  

Table 1: Adult Income – Decision Tree – Model Complexity Experiments 

Confidence, 
C 

Minimum 
Outputs, 

M 
Prune? # Leaves 

Size of 
Tree 

Build 
Model 
Time 

Test Model 
on Test 

Data 

Train % 
Correct 

Test % 
Correct 

-- 2 N 4485 5254 1.11 0.06 83.81% 83.20% 

0.5 2 Y 1518 1868 0.95 0.08 85.06% 84.56% 

0.25 2 Y 366 471 0.94 0.11 86.25% 85.20% 

0.125 2 Y 170 227 0.94 0.09 86.14% 85.44% 

0.25 3 Y 267 352 0.78 0.09 86.21% 85.52% 

0.25 4 Y 218 286 0.7 0.06 86.17% 85.44% 

 

Below, the confusion matrix and the decision tree Dataset 1 are shown. The decision tree shows 

the effect of pruning on the size of the tree. The root node of this tree is “capital gain”. The confusion 

matrix is a simple 2x2, the dimension of the matrix determined by the number of classes in the output. 

 



Learning curve experiments were performed to determine the sensitivity of the algorithm’s 

results to the size of the dataset. As the following graph shows, the training and test sets behave 

similarly for most dataset sizes. It is suspected that the test data sometimes performs better than the 

training data because the test set is larger for training sets up to 30-40%. 

Dataset 2: Letter Recognition 

The chart below summarizes the model complexity experiments. As compared with Dataset 1, the 

size of the tree is not reduced as much, likely due to the larger number of output classes. Again, the 

results show that decision trees are eager learners (although still compute is relatively show time 

frames). The training and test accuracy fall within 1% of each other, indicating a small reliance on the 

input parameters. Thus, the standard parameters confidence, C = 0.25 and minimum outputs, M = 2 

were selected for the learning curve experiments. Note the high training accuracy for M=4, and the 

resulting lower test accuracy, indicating overfitting, despite using 10-fold cross validation. 

Table 1: Letter Recognition – Decision Tree – Model Complexity Experiments 

Confidence, 
C 

Minimum 
Outputs, 

M 

Prune? # Leaves Size of 
Tree 

Build 
Model 
Time 

Test Model 
on Test 

Data 

Train % 
Correct 

Test % 
Correct 

-- 2 N 951 1901 0.88 0.11 84.76% 85.90% 

0.5 2 Y 895 1789 1.05 0.09 84.88% 86.06% 

0.25 2 Y 868 1735 1.01 0.13 84.80% 86.04% 

0.125 2 Y 816 1631 1.13 0.09 84.81% 86.04% 

0.25 3 Y 710 1419 0.96 0.09 84.50% 85.69% 

0.25 4 Y 600 1199 0.96 0.08 93.09% 84.33% 

 

The confusion matrix and decision tree for Dataset 2 are shown below. The decision tree shows 

the effect of pruning on reducing the size of the tree. Pruning must balance avoiding overfit, while also 

maintaining sufficient complexity to properly model the dataset. The root node of this tree is “x-ege”, or 

the mean edge count left to right.  The confusion matrix is 26x26 based on the 26 letters in the alphabet.  

                  



Learning curve experiments were performed to determine whether the algorithm was sensitive to 

the size of the dataset. The results are very predictable, as seen above, where the training and test 

accuracy follow closely, and increase with larger of the algorithm’s results to the size of the dataset.  

Decision Tree with Adaptive Boosting (AdaBoostM1)  

The WEKA classifier AdaBoostM1was applied to the J48 decision tree algorithm to evaluate the 

effect of boosting. Boosting is an iterative process that applies information gain to learn over a subset of 

data. The process can be applied to other machine learning algorithms, and is observed with J48 in this 

paper. 

Although the decision tree algorithm is normally a lazy learner, applying adaptive boosting to 

decision tree increasing the learning process by at least an order of magnitude. However, this is a 

welcome trade-off as the accuracy of the algorithm in Dataset 2 improved dramatically from 85% to 

95%. In Figure 6 below, the learning curves for decision trees with adaptive boosting are presented, for 

both datasets. 

 

Dataset 1: Adult Income 

The chart expands on the learning curve experiment from the previous section for decision trees. 

Similar curves were produced for boosting with 10 and 20 iterations and plotted together with the non-

boosted results. It is observed for this dataset that boosting did not improve the accuracy of the decision 

tree model, and instead, decreased the accuracy. Two possibilities may explain this result: the model 

overfits the training data; adaptive boosting reduces error but not necessarily improves accuracy, which 

makes it more consistently effective in regression problems. 

Dataset 2: Letter Recognition 

In contrast, the letter recognition dataset was very responsive to boosting. Both 10 and 20 

iterations increased the full training set accuracy from 85% to 95%, and there still may be some minor 



improvements at higher iterations (50+). This indicates that the decision tree algorithm generalizes the 

data very well on its own, and boosting effectively tunes the weights within the classifier. 

K Nearest Neighbors 

The WEKA classifier IBk (for Instance Based learning, with k nearest neighbors) was used to 

evaluate both datasets. The algorithm is a lazy learner because it works by identifying similar instances 

(neighbors) while it processes the dataset.  The number of nearest neighbors, k, that are evaluated per 

instance were tested between 1 and 90. Improved performance at k=1 indicates a high repetition of 

instances with the same attributes and output class. Improved performance at high values of k indicates 

a more complex model where there may be many dominating attributes.  

Two distance functions were explored for both datasets, as they were discussed in lecture: 

Euclidean (the norm) and Manhattan. The expectation is that the squared distance in the Euclidean 

distance function more aggressively weighs the closest neighbors than in the Manhattan function – this 

may not always perform better. 

Dataset 1: Adult Income 

The number of nearest neighbors (k) and the distance function were manipulated to evaluate kNN 

on Dataset 1. In the figure below, the model complexity chart indicates a 2-3% increase in accuracy from 

k=1 to k>15. Greater than k=15, the value of k has less of a significant impact. There is also a very small 

difference in results using the Euclidean and Manhattan distance functions, however best performing 

model employed k=60 and the Manhattan distance function. To explore further, the Manhattan distance 

function was selected and evaluated on more values of k. 

The learning curve chart explored how the model learns across various sizes of datasets. It was 

suspected that models with lower values of k may reach peak performance at different dataset sizes. 

However, the experiments show that peak performance occurs at 80-100%.  

  



Dataset 2: Letter Recognition 

In the letter recognition dataset, the observations vary significantly from the adult income dataset. 

The model complexity plot demonstrates a sharp decline in performance for increasing k, therefore k=1 

was selected. Again, the performance between distance functions was quite comparable, however 

Euclidean performed best at k=1 and was selected for further study on the learning curve.  

In the learning curve experiment, the primary focus was to evaluate the k=1 model. However, the 

k=60 model was included to observe whether the poor performance is a result of dataset size, such that, 

more data may help the k=60 model perform comparably or better than k=1. While the k=60 model 

improves faster than the k=1 model at 100% training size, also note that k=1 already performs very well 

at 95%, and further improvements are expected to be incremental. 

  

Artificial Neural Network 

The WEKA classifier MultilayerPerception was used to evaluate the behavior of neural networks. 

In this model, 4 parameters were manipulated: hidden layers (both the number of layers, and number of 

units per layer), the learning rate, momentum and iterations (also known as epochs). There is a wide 

array of neural network configurations, and each can be studied deeply. For the model complexity 

experiments, a starting point for selecting hidden layers was to use the average of the number of 

attributes and outputs classes. This performed very well for both datasets ([14+2]/2 = 8 units, 

[26+16]/2 = 21 units). Variations to the standard configuration all showed poorer performance, such as 

removing the hidden layer, adding a hidden layer, or varying number of units per layer. Learning rate 

and momentum were adjusted to develop a model that trains effectively without overfitting to the 

training dataset. 

The artificial neural network algorithm is an eager learner because it uses back-propagation to 

determine appropriate weights between perceptrons. In the interest of computation time, the model 



complexity experiments were performed with a maximum of I=50 iterations. While this approach may 

appear to introduce a restrictive bias to models that perform better with more iterations, it was 

observed in both datasets that performance improvement between I=50 and I=2000 is less than 2%.  

Dataset 1: Adult Income 

For this dataset, single hidden layers of 0, 8 and 14 were explored, and the results were accuracies 

around 83%, all within a range of 1% especially for iterations I>50. The best performing model H = 8 

was selected, and learning rates and momentum values were manipulated to determine that L=0.1 and 

M=0.2 produced the most accurate model. Surprisingly from I=500 to I=2000, the model showed 

improved on test accuracy but decreased on training accuracy. This is like due to a small variation 

between the training and test sets. Variation can also be seen in the learning curve results, as 

performance dips for the test set at 40%. This may have been reduced by randomizing the data before 

segmentation. 

 

 

Dataset 2: Letter Recognition 

For this dataset, several configurations were evaluated and the most relevant models had no 

hidden layer, and one hidden layer of 21. The value 21 was determined as an average of 26 output 

classes and 16 attributes. Two hidden layers of 21 were explored and performed closely with one 

hidden layer of one. As a consideration for further study, the performance of two hidden layers of 21 can 

be explored at iterations greater than I=50, which the model complexity experiments were performed 

with. A hidden layer of 21 was selected, and the evaluation of learning rate and momentum showed that 

L=0.1 and M=0.1 was not as optimal as L=0.3 and M=0.2. Additionally, L=0.5 and M=0.5 also showed 

poorer performance, indicating the parameters were too aggressive and had overfit the training data. 



The learning curve shows that the performance of the algorithm improves significantly at 40% 

when there is sufficient data. The positive slope at 100% indicates that a larger training set may further 

improve the model up to 85% accuracy.  

  

Support Vector Machines 

The WEKA classifier SMO (for sequential minimal optimization) was the final algorithm used to 

evaluate the two datasets. Support vector machines is an eager learning approach that works by 

creating a hyperplane to separate groups of classes, and optimizes the distance between points and this 

hyperplane. The shape of the hyperplane is controlled by a linear kernel, which may be replaced by 

other functions using the Kernel Trick. In this paper, two kernel functions were explored: Polynomial 

and RBF (radial basis function). The polynomial kernel function uses an exponential parameter E, while 

the RBF kernel function uses a gamma factor, G. 

Dataset 1: Adult Income 

In the model for the adult income dataset, the polynomial kernel performed best, peaking at E=1 

after which overfit became apparent as training accuracy increased and test accuracy decreased. For the 

RBF kernel, peak performance occurred at low values of G, and the same overfit pattern from the 

polynomial kernel was seen for higher values of G.  



  

Dataset 2: Letter Recognition 

The model complexity experiments were performed using 40% of the training set, for faster 

computation. As with Dataset 1, the polynomial kernel fit the data better for modeling this data, with 

E=4. Unlike Dataset 1, overfit is not observed for either kernel during model complexity experiments; 

however this may occur for larger training sets. Furthermore, the positive slope at 100% in the learning 

curve suggests more data will improve the performance of the model, despite already achieving 95% 

accuracy.  

  

Conclusion 

The model complexity and learning curve experiments were conducted on 80% of each of the 

overall datasets. The remaining 20% was set aside specifically for evaluating the models together. As 

observed, Dataset 1 is best represented by the decision tree algorithm, and Dataset 2 is best generalized 



by support vector machines. The proportion of false negatives to positives, the effect of more iterations 

and further tuning of the model parameters may be interesting for more analysis. 

 

 Dataset 1  Dataset 2  

Classifier Parameters Accuracy Parameters Accuracy 

Decision Tree C=0.25, M=3 85.41% C=0.25, M=2 86.05% 

Adaboost C=0.25, M=3, I=1 85.41% C=0.25, M=2, I=500 94.08% 

kNN Manhattan, k=60 83.14% Euclidean, k=1 94.13% 

ANN H=8, L=0.1, M=0.2, Epoch=500 83.38% H=21/21, L=0.3, M=0.2, Epoch=500 82.75% 

SVM PolyKernel, E=1 84.55% PolyKernel, E=4 94.48% 
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