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Abstract: This report presents an analysis on the performance of 4 random optimization algorithms 

tested on three cost functions, of different types: “Continuous Peaks”, “Knapsack” and “Travelling 

Salesman”. The random optimization algorithms compared are: Random Hill Climbing, Simulated 

Annealing, Genetic Algorithm and MIMIC. Finally, the performance of random optimization in 

determining weights in artificial networks is compared with back propagation for the “Letter 

Recognition” dataset from Assignment 1. 

Introduction 

The purpose of this report is to explore a variety of random optimization algorithms in two parts: 

firstly by comparing behavior when applied to three cost functions, and secondly by comparing the 

performance of back propagation with using the optimization algorithms to find optimal weights for a 

feed forward neural network. In Part 1, the following problems were selected for their difference in 

nature, and wide spectrum of applications: Continuous Peaks, Knapsack and Travelling Salesman. In 

Part 2, the problem set is borrowed from Assignment 1 as it has already been evaluated with ANN and 

back propagation: Letter Recognition. 

Optimization Algorithms 

 

The following algorithms are compared and implemented using ABAGAIL, as provided in the 

class. The Java code was built using IntelliJ IDEA. 

Randomized Hill Climbing (RHC)    

Randomized Hill Climbing locates local optima by moving towards more optimal neighbors until 

it reaches a peak. With random restarts, RHC randomizes its starting position to locate other local 

optima, and selects the value with the highest value as the global optimum. RHC was performed using 

RandomizedHillClimbing in ABAGAIL on Java. 



Simulated Annealing (SA) 

The term Simulated Annealing originates from metallurgy where the ductility in metals are 

improved by heating to a higher temperature (below melting, above the annealing temperature where 

residual structural stresses are relieved) and then slowly cooled to maintain its structure. The 

algorithm, a function of initial temperature and cooling rate, strikes a balance between exploring new 

points and exploiting nearby neighbors in search of local optima. Initially, at high temperatures, the 

algorithm explores by randomly seeking new points and as it cools, it proceeds to evaluate neighbors for 

local peaks. SA was performed using SimulatedAnnealing in ABAGAIL on Java, using inputs temperature 

(1E11) and cooling rate (0.95).  

Genetic Algorithm (GA) 

Genetic Algorithm is inspired by biology in which the population evolves by iteratively mating 

and mutating parts to crossover the best traits and to eliminate irrelevant traits. A significant 

disadvantage of GA is that it does not handle a large hypothesis space, which is dictated exponentially by 

the number of attributes. SA was performed using StandardGeneticAlgorithm in ABAGAIL on Java, using 

inputs populationSize (200), toMate (100), toMutate (10). 

Mutual-Information-Maximizing Input Clustering (MIMIC)  

MIMIC algorithm, as opposed to most optimization algorithms, “remembers” previous iterations 

and uses probability densities to build structure of the solution space and find optima. MIMIC was 

performed using MIMIC in ABAGAIL on Java, using inputs samples (200) and toKeep (20). 

Part 1: Apply Random Optimization to 3 Problems 

Implementation 

The existing cost function examples in the GitHub repository of ABAGAIL were used. Each 

algorithm was run using iterations of {100, 500, 1000, 2000, 3000, 4000, 5000, 10000, 50000, 100000, 

200000} to observe how quickly the algorithms converge on the optima. The exception was that MIMIC 

was performed up to 5000 iterations, as the algorithm is highly computation intensive but primarily 

because the additional time it takes to build structure while learning enables the algorithm to learn with 

fewer iterations. For the purpose of comparison, the function value for MIMIC at 5000 iterations is 

extrapolated uniformly to highlight the performance of other algorithms at high iterations. 

Each of these tests were run 10 times (that is, iterations =100 was run 10 times, iterations = 500 

was run10 times, etc.) and the average function value is reported. The code was modified to 

accommodate the 10 repetitions, and in addition the code was modified to record the time to run each 



iteration. The data was then exported to Excel and analyzed. For further study, it is suggested to repeat 

for 100 cycles, and to report the convergence of each algorithm per problem set. 

The default parameters in ABAGAIL were used for SA (temperature = 1E11, cooling rate = 0.95), 

GA (populationSize = 200, toMate = 20, toMutate = 10) and MIMIC (populationSize = 200, sampleSize = 

20). It would be interesting to tweak the parameters of each algorithm to observe how the performance 

of each algorithm changes. 

Optimization Problems 

While already included in the ABAGAIL repository, the problem sets were specifically chosen 

from a list of common problems [1]. The problems were chosen for their uniqueness and broad 

applications. 

Continuous Peaks (SA) 

This problem set contains many local optima in a 1D space, similar to the example in lectures 

about determining the elevation of many peaks. Although this problem set was chosen for its simplicity, 

it highlights differences between random optimization algorithms well and applies to other examples 

like topography and optimization of surfaces. It is intuitive for a human to observe the global optima 

visually,  however using random optimization and without processing each data point, the different 

performance between the random optimization algorithms perform is quite evident.  

 

  

 

As the above charts show, genetic algorithm appears to perform best, at least for a large number 

of iterations. However, GA only begins to perform best around 30000 iterations, and overall 

SA/GA/MIMIC perform closely to 110. SA, in fact, performs the best at iterations below 5000 that are 

able to achieve 105 function value, as seen in the charts below. Additionally, SA achieves this 

comparable performance at least 2 orders of magnitude faster than GA and MIMIC. 



 

 

Simulated annealing performs well on the continuous peaks problem, as it is well suited for a 

large search space and for finding an approximate global optima, rather than a precise local optimum. 

Beginning in the exploring phase, SA randomly searches the space for optima and begins to cool and 

exploit the observed points by decreasing the probability of accepting worse solutions. Given that SA 

performs well with the default parameters, further study and additional time would allow a study of the 

impact of using temperatures of 1E9 to 1E12, and cooling temperatures in 0.05 increments between 

0.05 and 0.95. 

Knapsack Problem (MIMIC) 

The Knapsack problem is a NP-hard (at least as hard as the hardest problems in non-

deterministic polynomial acceptable problems) optimization problem with a set of constraints. The 

analogy lends itself from backpackers who try to maximize the occupying volume in a knapsack while 

remaining within the weight threshold such that the knapsack can be carried long distances. The 

problem is unique because there is no solution that is both maximal volume and lightest weight. This 

optimization problem can be modified to consider the number of items packed, but can also related to 

the “cutting stock” problem in which manufacturers have stock material and want to make the largest 

number of parts while reducing the amount of wasted/unused material. Further applications include 

maximizing profits for a business while considering environmental or social concerns.  

 



  

 

As the above charts show, the algorithms show peak performance around 5000 iterations, and 

begin to plateau at a lower function value for 50000 or more iterations. It is expected that the lower 

performance at 100000 iterations occurs due to a small number of repetitions (10) which is not enough 

to demonstrate convergence of the fitness function. This is demonstrated in the chart below where the 

standard deviation for the 10 repetitions increases at iterations = 100000.   

This problem set was selected to highlight the benefits of MIMIC. MIMIC consistently performs 

better than all the algorithms by roughly 10% and for iterations up to 5000 it has the lowest standard 

deviation. The low standard deviation (see chart below) indicates that between the 10 repetitions, 

MIMIC arrives at  similar optima quite consistently, despite a different and random starting point. It is 

important to note though, that similar to the continuous peaks problem, the logarithmic clock time is 

considerably higher for MIMIC (again, as a trade-off for developing structure). The results are 

interesting, as MIMIC and GA typically perform better with continuous attributes because each 

successive generation interpolates or extrapolates from the previous. For this problem set, MIMIC  may 

perform well for this type of problem as it can learn from previous searches and interpolate for the best 

option. MIMIC performance may be further improved by evaluating the performance when changing the 

population and sample sizes. 

 

 



Travelling Salesman (GA) 

The travelling salesman is similar to the knapsack problem, in which the travel distance between 

many locations is minimized (assuming each location is visited once). This has useful applications to the 

travel, transportation, shipping and logistics in which destinations rarely lie along a line and some 

extent of detours is required to visit all locations. In the knapsack problem, MIMIC and GA were not 

expected to perform the best because they typically do better for continuous functions, however MIMIC 

performed well. In this problem set, GA performs well and it is expected that MIMIC does not perform as 

well here because, as an NP-hard problem, the hypothesis space is too complex.  

 

  

 

When visualizing the problem, the difference from the knapsack problem begins to show. The 

travelling salesman problem is a set of points in a 2D plane in which the cost function relates to the total 

distance travelled when all points are visited. MIMIC uses joint probabilities to develop an 

understanding of dependencies within the data, however for this problem, various optimal solutions 

may be significantly different because the order of the points visited matters whereas in the knapsack 

problem it did not. The comparison between problems is essentially the difference between a problem 

with vectors and scalars. It would be interesting to see the effects of varying the population, mate and 

mutate sizes for this problem set. 

Part 2: Neural Network with Optimization Algorithms 

Introduction 

In Assignment 1, two datasets were evaluated when comparing supervised learning algorithms, 

including artificial neural networks. The purpose of Part 2 is to implement the random optimization 

algorithms with feed-forward neural networks, and compare the performance with back propagation 

from Assignment 1. 



Dataset 

The letter recognition dataset contains 26 classes (one for each letter in the alphabet), 16 

attributes (position, length, statistical moments), and 20,000 instances of user-generated letters based 

on a variety of fonts. The size of the dataset allows for proper segmentation into training, validation and 

test sets, although not required in this assignment. Based on Assignment 1, the best neural network had 

an input layer equal to the number of attributes (16), an output layer equal the number of output classes 

(26) and a hidden layer with the number of nodes equal to the average of the input and output (21). The 

weights within the network were determined using back propagation, with the ideal parameters  

learning rate = 0.3 and momentum = 0.2. The peak performance of ANN using WEKA was about 85% 

accuracy. 

 

 

Implementation 

The dataset was modified from .arff file that listed the class first before the 16 attributes, into a 

.csv with the output class at the end. In addition, the output class was modified from the letters A-Z to 0-

25 as ABAGAIL is better suited to handle numbers. Furthermore, the ABAGAIL code was updated  to 

convert 0-25 categorization into one-hot categorization to remove the bias that implies more similarity 

between 1 & 2 than 1 & 25 because the numerical difference is smaller.  

Using modified code from ABAGAIL’s AbaloneTest, it was determined that there was some error 

in the way the class was comparing the predicted and actual instances. Despite several attempts to 

correct this, Part 2 was carried out using modified code from MosDragon on Github [3]. In addition to 

enabling proper comparison of the three random optimization methods, the class also enables cross 

validation and train/test set splits. For the purpose of this paper, cross validation has not been 

implemented, although including this would be more comparable to the 10-fold CV used in Assignment 

1. However, 10-fold CV adds much more computation, and many insights may be highlighted without 



CV. The training set % used was 0.7. The neural network parameters are initialLearningRate = 0.1, 

maxLearningRate = 50 and minLearningRate = 0.000001. 

Bias to recognize in this report are preference bias for simple models and those that computer 

faster to enable a higher volume of iteration while providing information to learn from. Another bias to 

consider is restrictive bias which is inherent to the dataset which looks only at digital fonts as opposed 

to handwriting. Another restrictive bias is the way the neural network incrementally changes the 

weights and random optimization parameters. In the case of the implemented code, an array of 

acceptable values is populated a priori and the “best” model is determined from the limited list of 

possible parameter values.  

Algorithmic Analysis 

The following sections evaluate the ANN performance when varying the number of iterations, 

the size of the training set, and type of optimization algorithm, and the parameters used to build the 

model.  

The chart below shows that at very low iterations, the neural network already achieves high 

accuracy. The accuracy more or less does not improve with more iterations. 

 

The chart below demonstrates that a representative model is generated from the training set to 

classify the test set. The graph also shows that SA performs well for this problem set, particularly at 

30% training size. The right-hand graph shows that SA takes significantly longer to compute than the 

other methods. As observed in Part 1, typically genetic algorithms and MIMIC are computationally more 

intensive. Since this example has 16 attributes, the hypothesis space is much more complex and the 

computations for GA grow exponentially with the attributes as it tries to mate each combination of 

attributes to determine what traits to mutate. 

 



 

Randomized Hill Climbing 

 Randomized hill climbing performs quite well for this problem, with about 97% accuracy in 10s 

training and test time. RHC works well in neural networks because the weights are continuous values 

and RHC employs a similar principle to gradient descent which tests neighboring points to 

incrementally climb towards local optima or settle at a peak.  

Simulated Annealing 

The implemented code was initially run to determine the ideal temperature and cooling rate by 

modifying it between iterations. The optimal parameters were generally temperature between 1E9 and 

1E15, and cooling rate between 0.50 and 099. The parameters 1E9 and 0.99 performed quite well, and 

were selected for further analysis. The lower temperature and high cooling rate indicate that some 

exploration is important at the start; however high exploitation is important to select the optimal neural 

network weights.  

This graph demonstrates the high T and high cooling rate do not pair well, and neither do low T 

and low cooling rate. This results in a model that does not carry the advantage of exploring or 

exploiting. 

 



Genetic Algorithm 

 The implemented code was initially run to determine the ideal ratios for population, mate and 

mutate. The optimal parameters were around 0.25, 0.04 and 0.04. The accuracies seen range between 

93-95%, which is considerably high, but slightly less than the RHC performance. In genetic algorithm, 

mutation provides exploration while cross-over leads the population to converge on good solutions 

(exploitation). Consequently, there is a balance between cross-over trying to converge and mutation 

trying to avoid convergence and explore more areas. Unfortunately, beyond a light understanding of 

how mate and mutate ratios affect exploration and exploitation, GA is known to be a black box for 

finding optimal solutions while unable to make it clear or intuitive.  

 

Conclusion 

Overall, simulated annealing appeared to perform the best at 98%. This suggests that the optima 

are more distinct (as exploitation is more important that exploration). In comparison to the WEKA 

analysis, which achieved a maximum 85%, all three algorithms perform better. This, of course, is 

problem dependent and further study is highly recommended. The learning rate and momentum in the 

WEKA model may need to be revisited. 

Bibliography 

[1] https://en.wikipedia.org/wiki/Combinatorial_optimization#Applications 

[2] https://github.com/pushkar/ABAGAIL 

[3] https://gist.github.com/mosdragon/ad893f877a631260e3e8 

[4] Dataset 1: Lichman, M. (2013). UCI Machine Learning Repository 

[http://archive.ics.uci.edu/ml/datasets/Letter+Recognition]. Irvine, CA: University of California, 

School of Information and Computer Science. 

  

 

https://en.wikipedia.org/wiki/Combinatorial_optimization#Applications
https://github.com/pushkar/ABAGAIL

